Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 304(9): 1974-1983, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33554453

RESUMO

Amino-Plex (SM1997) is a spray or liquid cosmeceutical that has been used for skin dryness, aging, or sun exposure. Its formulation includes electrolytes, trace minerals, amino acids, peptides, nucleosides and nucleotides, all substances that are <10 kDa. It is designed to increase oxygen levels in cells, improve glucose transport, stimulate ATP synthesis, and stimulate collagen formation, actions that can help facilitate repair of damaged cells. It also supports collagen synthesis and formation of healthy granulation tissue, accelerating reepithelization of damaged skin. Here, SM1997 has been tested as an agent to improve the healing of mustard injury to the cornea. The results indicate that SM1997 facilitates the retention of corneal epithelial attachment when applied to corneal organ cultures after nitrogen mustard exposure. In addition, it reduces the activation of enzymes that lead to epithelial-stromal separation, namely, ADAM17 and MMP-9. Therefore, SM1997 should be further investigated as a potential therapy sulfur mustard and nitrogen mustard exposure.


Assuntos
Inserção Epitelial , Mecloretamina , Colágeno , Córnea , Mostardeira
2.
Toxicol Appl Pharmacol ; 401: 115078, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32479919

RESUMO

Sulfur mustard (SM) is a highly toxic blistering agent thought to mediate its action, in part, by activating matrix metalloproteinases (MMPs) in the skin and disrupting components of the basement membrane zone (BMZ). Type IV collagenases (MMP-9) degrade type IV collagen in the skin, a major component of the BMZ at the dermal-epidermal junction. In the present studies, a type IV collagenase inhibitor, N-hydroxy-3-phenyl-2-(4-phenylbenzenesulfonamido) propanamide (BiPS), was tested for its ability to protect the skin against injury induced by SM in the mouse ear vesicant model. SM induced inflammation, epidermal hyperplasia and microblistering at the dermal/epidermal junction of mouse ears 24-168 h post-exposure. This was associated with upregulation of MMP-9 mRNA and protein in the skin. Dual immunofluorescence labeling showed increases in MMP-9 in the epidermis and in the adjacent dermal matrix of the SM injured skin, as well as breakdown of type IV collagen in the basement membrane. Pretreatment of the skin with BiPS reduced signs of SM-induced cutaneous toxicity; expression of MMP-9 mRNA and protein was also downregulated in the skin by BiPS. Following BiPS pretreatment, type IV collagen appeared intact and was similar to control skin. These results demonstrate that inhibiting type IV collagenases in the skin improves basement membrane integrity after exposure to SM. BiPS may hold promise as a potential protective agent to mitigate SM induced skin injury.


Assuntos
Benzopiranos/uso terapêutico , Substâncias para a Guerra Química/toxicidade , Colágeno Tipo IV/antagonistas & inibidores , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Gás de Mostarda/toxicidade , Dermatopatias/tratamento farmacológico , Animais , Benzopiranos/farmacologia , Colágeno Tipo IV/metabolismo , Epiderme/efeitos dos fármacos , Epiderme/patologia , Masculino , Inibidores de Metaloproteinases de Matriz/farmacologia , Camundongos , Dermatopatias/induzido quimicamente , Dermatopatias/metabolismo , Dermatopatias/patologia
3.
Anat Rec (Hoboken) ; 303(6): 1642-1652, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32421930

RESUMO

Laminin-332 is a basement membrane protein composed of three genetically distinct polypeptide chains that actively promote both skin epidermal cell adhesion and migration. Proteolytic fragments of the laminin γ2 chain stimulate migration and scattering of keratinocytes and cancer cells. Sulfur mustard (SM) is a bifunctional alkylating agent that induces separation of basal keratinocytes from the dermal-epidermal junction and invokes a strong inflammatory response leading to delayed wound repair. In the present studies, the role of laminin γ2 in SM-induced skin injury and wound repair was investigated using the mouse ear vesicant model. We found that laminin γ2 chain mRNA was preferentially upregulated in mouse ear skin exposed to SM. In situ hybridization confirmed overexpression of laminin γ2 transcript. Western blot analysis showed increased protein expression of the full-length proform of laminin γ2 and smaller processed fragments of laminin γ2 in skin exposed to SM. Dual immunofluorescence labeling indicated that laminin γ2 fragments are prevalent in suprabasal keratinocytes behind the leading edge in areas of hyperplasia in injured skin. In addition, co-expression of laminin γ2 and the senescent marker, p16-INK4a was found to overlap with the hyperplastic migratory epithelial sheet. This observation is similar to hypermotile keratinocytes reported in invasive carcinoma cells. Overall, our studies indicate that laminin γ2 is preferentially expressed in skin post SM exposure and that protein expression appears to become progressively more fragmented. The laminin γ2 fragments may play a role in regulating SM-induced skin wound repair. Anat Rec, 2020. © 2020 American Association for Anatomy.


Assuntos
Fármacos Dermatológicos/toxicidade , Laminina/metabolismo , Gás de Mostarda/toxicidade , Pele/metabolismo , Cicatrização/fisiologia , Animais , Movimento Celular/fisiologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Laminina/genética , Camundongos , Pele/efeitos dos fármacos , Regulação para Cima
4.
Artigo em Inglês | MEDLINE | ID: mdl-30058002

RESUMO

Sulfur Mustard (SM) is a potent vesicant or blistering agent. It is a highly reactive bi-functional alkylating agent that cross links proteins, DNA, and other cellular components. Laminin 332 is a heterotrimer glycoprotein and a crucial skin component that attaches the epidermal basal keratinocytes to the dermis. SM wounds histologically appear similar to Epidermolysis Bullosa (EB), human genetic blistering diseases that involve genetic changes in laminin 332. The specific mechanism of action of SM exposure is unknown, but there are several key similarities between vesicant induced cutaneous injury and the Junctional form of EB (JEB) cutaneous injury: 1) Initial alkylation causes blistering similar to JEB; 2) Initial injury is followed by protease activation and prolonged inflammation similar to the chronic inflammation observed in EB; 3) The blister plane is at the level of the lamina lucida in the Basement Membrane Zone (BMZ) for both JEB and SM-induced injury. This suggests that injury induced by vesicants is not unique and probably involves malformation of laminin 332. Understanding the role of laminin 332 in SM induced blisters may provide perspectives for future molecular therapeutic countermeasures against SM exposure.

5.
Toxicol Appl Pharmacol ; 355: 52-59, 2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-29935281

RESUMO

Sulfur mustard (2,2'-dichlorodiethyl sulfide, SM) is a chemical warfare agent that generates an inflammatory response in the skin and causes severe tissue damage and blistering. In earlier studies, we identified cutaneous damage induced by SM in mouse ear skin including edema, erythema, epidermal hyperplasia and microblistering. The present work was focused on determining if SM-induced injury was associated with alterations in mRNA and protein expression of specific cytokines and chemokines in the ear skin. We found that SM caused an accumulation of macrophages and neutrophils in the tissue within one day which persisted for at least 7 days. This was associated with a 2-15 fold increase in expression of the proinflammatory cytokines interleukin-1ß, interleukin-6, and tumor necrosis factor α at time points up to 7 days post-SM exposure. Marked increases (20-1000 fold) in expression of chemokines associated with recruitment and activation of macrophages were also noted in the tissue including growth-regulated oncogene α (GROα/CXCL1), monocyte chemoattractant protein 1 (MCP-1/CCL2), granulocyte-colony stimulating factor (GCSF/CSF3), macrophage inflammatory protein 1α (MIP1α/CCL3), and IFN-γ-inducible protein 10 (IP10/CXCL10). The pattern of cytokines/chemokine expression was coordinate with expression of macrophage elastase/MMP12 and neutrophil collagenase/MMP8 suggesting that macrophages and neutrophils were, at least in part, a source of cytokines and chemokines. These data support the idea that inflammatory cell-derived mediators contribute to the pathogenesis of SM induced skin damage. Modulating the infiltration of inflammatory cells and reducing the expression of inflammatory mediators in the skin may be an important strategy for mitigating SM-induced cutaneous injury.


Assuntos
Substâncias para a Guerra Química/toxicidade , Quimiocinas/biossíntese , Citocinas/biossíntese , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Pele/metabolismo , Animais , Orelha Externa/efeitos dos fármacos , Orelha Externa/metabolismo , Orelha Externa/patologia , Imuno-Histoquímica , Inflamação/induzido quimicamente , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Masculino , Metaloproteinase 12 da Matriz/biossíntese , Metaloproteinase 8 da Matriz/biossíntese , Camundongos , RNA/biossíntese , RNA/genética , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/metabolismo
6.
Ann N Y Acad Sci ; 1378(1): 158-165, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27737494

RESUMO

Mustard exposures result in epithelial-stromal separations in the cornea and epidermal-dermal separations in the skin. Large blisters often manifest in skin, while the cornea develops microblisters, and, when enough form, the epithelium sloughs. If the exposure is severe, healing can be imperfect and can result in long-term adverse consequences. For the cornea, this could manifest as recurrent corneal erosions. Since the corneal epithelial-stromal separations are in the region identified by electron microscopy as the lamina lucida, the same region affected by the blistering disease junctional epidermolysis bullosa (JEB), we postulated that the molecules that are defective in JEB would be the same ones cleaved by mustard compounds. These molecules are α6ß4 integrin and collagen XVII, which can be cleaved by matrix metalloproteinase-9 (MMP-9) and ADAM17, respectively. Therefore, our laboratory has tested MMP-9 and ADAM17 inhibitors as potential therapies to attenuate corneal mustard injury. Our results demonstrated that inhibiting MMP-9 and ADAM17 resulted in less epithelial-stromal separation in the corneas at 24 h postexposure, as compared with using only medium as a therapy.


Assuntos
Membrana Basal/efeitos dos fármacos , Membrana Basal/patologia , Córnea/efeitos dos fármacos , Córnea/patologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Proteína ADAM17/antagonistas & inibidores , Proteína ADAM17/metabolismo , Administração Cutânea , Animais , Membrana Basal/metabolismo , Guerra Química/tendências , Córnea/metabolismo , Humanos , Metaloproteinase 9 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Técnicas de Cultura de Órgãos
7.
Exp Mol Pathol ; 100(3): 522-31, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27189522

RESUMO

Nitrogen mustard (NM) is a bifunctional alkylating agent that is highly reactive in the skin causing extensive tissue damage and blistering. In the present studies, a modified cutaneous murine patch model was developed to characterize NM-induced injury and to evaluate the efficacy of an indomethacin pro-drug in mitigating toxicity. NM (20µmol) or vehicle control was applied onto 6mm glass microfiber filters affixed to the shaved dorsal skin of CD-1 mice for 6min. This resulted in absorption of approximately 4µmol of NM. NM caused localized skin damage within 1 d, progressing to an eschar within 2-3 d, followed by wound healing after 4-5 d. NM-induced injury was associated with increases in skin thickness, inflammatory cell infiltration, reduced numbers of sebocytes, basal keratinocyte double stranded DNA breaks, as measured by phospho-histone 2A.X expression, mast cell degranulation and increases in inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2). Wound healing was characterized by epidermal hyperplasia and marked increases in basal cells expressing proliferating cell nuclear antigen. A novel indomethacin-anticholinergic prodrug (4338) designed to target cyclooxygenases and acetylcholinesterase (AChE), was found to markedly suppress NM toxicity, decreasing wound thickness and eschar formation. The prodrug also inhibited mast cell degranulation, suppressed keratinocyte expression of iNOS and COX-2, as well as markers of epidermal proliferation. These findings indicate that a novel bifunctional pro-drug is effective in limiting NM mediated dermal injury. Moreover, our newly developed cutaneous patch model is a sensitive and reproducible method to assess the mechanism of action of countermeasures.


Assuntos
Anti-Inflamatórios/farmacologia , Indometacina/análogos & derivados , Mecloretamina/toxicidade , Pró-Fármacos/farmacologia , Pele/efeitos dos fármacos , Alquilantes/toxicidade , Animais , Anti-Inflamatórios/química , Antagonistas Colinérgicos/química , Antagonistas Colinérgicos/farmacologia , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/química , Inibidores de Ciclo-Oxigenase/farmacologia , Dano ao DNA , Feminino , Histonas/metabolismo , Imuno-Histoquímica , Indometacina/química , Indometacina/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo , Pró-Fármacos/química , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pele/lesões , Pele/patologia , Fatores de Tempo , Cicatrização/efeitos dos fármacos
8.
Toxicol Appl Pharmacol ; 303: 30-44, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27125198

RESUMO

Vesicants including sulfur mustard (SM) and nitrogen mustard (NM) are bifunctional alkylating agents that cause skin inflammation, edema and blistering. This is associated with alterations in keratinocyte growth and differentiation. Endogenous cannabinoids, including N-arachidonoylethanolamine (anandamide, AEA) and 2-arachidonoyl glycerol (2-AG), are important in regulating inflammation, keratinocyte proliferation and wound healing. Their activity is mediated by binding to cannabinoid receptors 1 and 2 (CB1 and CB2), as well as peroxisome proliferator-activated receptor alpha (PPARα). Levels of endocannabinoids are regulated by fatty acid amide hydrolase (FAAH). We found that CB1, CB2, PPARα and FAAH were all constitutively expressed in mouse epidermis and dermal appendages. Topical administration of NM or SM, at concentrations that induce tissue injury, resulted in upregulation of FAAH, CB1, CB2 and PPARα, a response that persisted throughout the wound healing process. Inhibitors of FAAH including a novel class of vanillyl alcohol carbamates were found to be highly effective in suppressing vesicant-induced inflammation in mouse skin. Taken together, these data indicate that the endocannabinoid system is important in regulating skin homeostasis and that inhibitors of FAAH may be useful as medical countermeasures against vesicants.


Assuntos
Alquilantes/toxicidade , Substâncias para a Guerra Química/toxicidade , Irritantes/toxicidade , Mecloretamina/toxicidade , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Amidoidrolases/antagonistas & inibidores , Amidoidrolases/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Pelados , PPAR alfa/metabolismo , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Pele/metabolismo
9.
Invest Ophthalmol Vis Sci ; 57(4): 1687-98, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27058125

RESUMO

PURPOSE: Sulfur mustard, nitrogen mustard (NM), and 2-chloroethyl ethyl sulfide all cause corneal injury with epithelial-stromal separation, differing only by degree. Injury can resolve in a few weeks or develop into chronic corneal problems. These vesicants induce microbullae at the epithelial-stromal junction, which is partially caused by cleavage of transmembranous hemidesmosomal collagen XVII, a component anchoring the epithelium to the stroma. ADAM17 is an enzyme involved in wound healing and is able to cleave collagen XVII. The activity of ADAM17 was inhibited in vesicant-exposed corneas by four different hydroxamates, to evaluate their therapeutic potential when applied 2 hours after exposure, thereby allowing ADAM17 to perform its early steps in wound healing. METHODS: Rabbit corneal organ cultures exposed to NM for 2 hours were washed, then incubated at 37°C for 22 hours, with or without one of the four hydroxamates (dose range, 0.3-100 nmol in 20 µL, applied four times). Corneas were analyzed by light and immunofluorescence microscopy, and ADAM17 activity assays. RESULTS: Nitrogen mustard-induced corneal injury showed significant activation of ADAM17 levels accompanying epithelial-stromal detachment. Corneas treated with hydroxamates starting 2 hours post exposure showed a dose-dependent ADAM17 activity inhibition up to concentrations of 3 nmol. Of the four hydroxamates, NDH4417 (N-octyl-N-hydroxy-2-[4-hydroxy-3-methoxyphenyl] acetamide) was most effective for inhibiting ADAM17 and retaining epithelial-stromal attachment. CONCLUSIONS: Mustard exposure leads to corneal epithelial sloughing caused, in part, by the activation of ADAM17 at the epithelial-stromal junction. Select hydroxamate compounds applied 2 hours after NM exposure mitigated epithelial-stromal separation.


Assuntos
Proteínas ADAM/metabolismo , Doenças da Córnea/metabolismo , Epitélio Corneano/metabolismo , Mecloretamina/toxicidade , Proteína ADAM17 , Animais , Western Blotting , Células Cultivadas , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/patologia , Substância Própria/efeitos dos fármacos , Substância Própria/metabolismo , Substância Própria/patologia , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Humanos , Coelhos , Tomografia de Coerência Óptica , Fator de Necrose Tumoral alfa
10.
Toxicol Appl Pharmacol ; 280(2): 236-44, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25127551

RESUMO

Sulfur mustard (bis(2-chloroethyl) sulfide, SM) is a highly reactive bifunctional alkylating agent inducing edema, inflammation, and the formation of fluid-filled blisters in the skin. Medical countermeasures against SM-induced cutaneous injury have yet to be established. In the present studies, we tested a novel, bifunctional anti-inflammatory prodrug (NDH 4338) designed to target cyclooxygenase 2 (COX2), an enzyme that generates inflammatory eicosanoids, and acetylcholinesterase, an enzyme mediating activation of cholinergic inflammatory pathways in a model of SM-induced skin injury. Adult SKH-1 hairless male mice were exposed to SM using a dorsal skin vapor cup model. NDH 4338 was applied topically to the skin 24, 48, and 72 h post-SM exposure. After 96 h, SM was found to induce skin injury characterized by edema, epidermal hyperplasia, loss of the differentiation marker, keratin 10 (K10), upregulation of the skin wound marker keratin 6 (K6), disruption of the basement membrane anchoring protein laminin 322, and increased expression of epidermal COX2. NDH 4338 post-treatment reduced SM-induced dermal edema and enhanced skin re-epithelialization. This was associated with a reduction in COX2 expression, increased K10 expression in the suprabasal epidermis, and reduced expression of K6. NDH 4338 also restored basement membrane integrity, as evidenced by continuous expression of laminin 332 at the dermal-epidermal junction. Taken together, these data indicate that a bifunctional anti-inflammatory prodrug stimulates repair of SM induced skin injury and may be useful as a medical countermeasure.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antagonistas Colinérgicos/uso terapêutico , Gás de Mostarda/toxicidade , Dermatopatias/tratamento farmacológico , Animais , Ciclo-Oxigenase 2 , Antígeno Ki-67/análise , Masculino , Metaloproteinase 9 da Matriz , Camundongos , Camundongos Pelados , Pele/patologia , Dermatopatias/induzido quimicamente , Dermatopatias/patologia , Cicatrização/efeitos dos fármacos
11.
Exp Mol Pathol ; 96(3): 316-27, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24662110

RESUMO

Sulfur mustard (SM) is a bifunctional alkylating agent causing skin inflammation, edema and blistering. A hallmark of SM-induced toxicity is follicular and interfollicular epithelial damage. In the present studies we determined if SM-induced structural alterations in hair follicles and sebaceous glands were correlated with cell damage, inflammation and wound healing. The dorsal skin of hairless mice was treated with saturated SM vapor. One to seven days later, epithelial cell karyolysis within the hair root sheath, infundibulum and isthmus was apparent, along with reduced numbers of sebocytes. Increased numbers of utriculi, some with connections to the skin surface, and engorged dermal cysts were also evident. This was associated with marked changes in expression of markers of DNA damage (phospho-H2A.X), apoptosis (cleaved caspase-3), and wound healing (FGFR2 and galectin-3) throughout pilosebaceous units. Conversely, fatty acid synthase and galectin-3 were down-regulated in sebocytes after SM. Decreased numbers of hair follicles and increased numbers of inflammatory cells surrounding the utriculi and follicular cysts were noted within the wound 3-7 days post-SM exposure. Expression of phospho-H2A.X, cleaved caspase-3, FGFR2 and galectin-3 was decreased in dysplastic follicular epidermis. Fourteen days after SM, engorged follicular cysts which expressed galectin-3 were noted within hyperplastic epidermis. Galectin-3 was also expressed in basal keratinocytes and in the first few layers of suprabasal keratinocytes in neoepidermis formed during wound healing indicating that this lectin is important in the early stages of keratinocyte differentiation. These data indicate that hair follicles and sebaceous glands are targets for SM in the skin.


Assuntos
Folículo Piloso/efeitos dos fármacos , Gás de Mostarda/toxicidade , Glândulas Sebáceas/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Caspase 3/genética , Caspase 3/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Modelos Animais de Doenças , Regulação para Baixo , Células Epiteliais/efeitos dos fármacos , Galectina 3/genética , Galectina 3/metabolismo , Folículo Piloso/patologia , Histonas/genética , Histonas/metabolismo , Queratinócitos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Pelados , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Glândulas Sebáceas/patologia , Pele/efeitos dos fármacos , Pele/patologia , Cicatrização/efeitos dos fármacos
12.
Toxicol Appl Pharmacol ; 272(2): 345-55, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23845594

RESUMO

The cornea is highly sensitive to oxidative stress, a process that can lead to lipid peroxidation. Ultraviolet light B (UVB) and nitrogen mustard (mechlorethamine) are corneal toxicants known to induce oxidative stress. Using a rabbit air-lifted corneal organ culture model, the oxidative stress responses to these toxicants in the corneal epithelium was characterized. Treatment of the cornea with UVB (0.5 J/cm(2)) or nitrogen mustard (100 nmol) resulted in the generation of 4-hydroxynonenal (4-HNE), a reactive lipid peroxidation end product. This was associated with increased expression of the antioxidant, heme oxygenase-1 (HO-1). In human corneal epithelial cells in culture, addition of 4-HNE or 9-nitrooleic acid, a reactive nitrolipid formed during nitrosative stress, caused a time-dependent induction of HO-1 mRNA and protein; maximal responses were evident after 10h with 30 µM 4-HNE or 6h with 10 µM 9-nitrooleic acid. 4-HNE and 9-nitrooleic acid were also found to activate Erk1/2, JNK and p38 MAP kinases, as well as phosphoinositide-3-kinase (PI3)/Akt. Inhibition of p38 blocked 4-HNE- and 9-nitrooleic acid-induced HO-1 expression. Inhibition of Erk1/2, and to a lesser extent, JNK and PI3K/Akt, suppressed only 4-HNE-induced HO-1, while inhibition of JNK and PI3K/Akt, but not Erk1/2, partly reduced 9-nitrooleic acid-induced HO-1. These data indicate that the actions of 4-HNE and 9-nitrooleic acid on corneal epithelial cells are distinct. The sensitivity of corneal epithelial cells to oxidative stress may be an important mechanism mediating tissue injury induced by UVB or nitrogen mustard.


Assuntos
Aldeídos/metabolismo , Córnea/metabolismo , Peroxidação de Lipídeos , Peróxidos Lipídicos/metabolismo , Mecloretamina/toxicidade , Raios Ultravioleta/efeitos adversos , Aldeídos/toxicidade , Animais , Córnea/efeitos dos fármacos , Córnea/efeitos da radiação , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Heme Oxigenase-1/biossíntese , Humanos , Peroxidação de Lipídeos/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos da radiação , Peróxidos Lipídicos/toxicidade , Técnicas de Cultura de Órgãos , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/efeitos da radiação , Coelhos , Fatores de Tempo
13.
Toxicol Appl Pharmacol ; 268(2): 178-87, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23357548

RESUMO

The endoplasmic reticulum (ER) stress response is a cell survival pathway upregulated when cells are under severe stress. Severely damaged mouse ear skin exposed to the vesicant, sulfur mustard (bis-2-chloroethyl sulfide, SM), resulted in increased expression of ER chaperone proteins that accompany misfolded and incorrectly made proteins targeted for degradation. Time course studies with SM using the mouse ear vesicant model (MEVM) showed progressive histopathologic changes including edema, separation of the epidermis from the dermis, persistent inflammation, upregulation of laminin γ2 (one of the chains of laminin-332, a heterotrimeric skin glycoprotein required for wound repair), and delayed wound healing from 24h to 168h post exposure. This was associated with time related increased expression of the cell survival ER stress marker, GRP78/BiP, and the ER stress apoptosis marker, GADD153/CHOP, suggesting simultaneous activation of both cell survival and non-mitochondrial apoptosis pathways. Dual immunofluorescence labeling of a keratinocyte migration promoting protein, laminin γ2 and GRP78/BIP, showed colocalization of the two molecules 72h post exposure indicating that the laminin γ2 was misfolded after SM exposure and trapped within the ER. Taken together, these data show that ER stress is induced in mouse skin within 24h of vesicant exposure in a defensive response to promote cell survival; however, it appears that this response is rapidly overwhelmed by the apoptotic pathway as a consequence of severe SM-induced injury.


Assuntos
Substâncias para a Guerra Química/toxicidade , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Animais , Apoptose/efeitos dos fármacos , Orelha , Chaperona BiP do Retículo Endoplasmático , Proteínas de Choque Térmico/análise , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/patologia , Laminina/biossíntese , Masculino , Camundongos , Modelos Animais , Pele/patologia , Fator de Transcrição CHOP/análise , Cicatrização
14.
Exp Mol Pathol ; 91(2): 515-27, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21672537

RESUMO

Sulfur mustard (SM, bis(2-chloroethyl)sulfide) is a bifunctional alkylating agent that causes dermal inflammation, edema and blistering. To investigate the pathogenesis of SM-induced injury, we used a vapor cup model which provides an occlusive environment in which SM is in constant contact with the skin. The dorsal skin of SKH-1 hairless mice was exposed to saturated SM vapor or air control. Histopathological changes, inflammatory markers and DNA damage were analyzed 1-14 days later. After 1 day, SM caused epidermal thinning, stratum corneum shedding, basal cell karyolysis, hemorrhage and macrophage and neutrophil accumulation in the dermis. Cleaved caspase-3 and phosphorylated histone 2A.X (phospho-H2A.X), markers of apoptosis and DNA damage, respectively, were increased whereas proliferating cell nuclear antigen (PCNA) was down-regulated after SM exposure. By 3 days, epithelial cell hypertrophy, edema, parakeratosis and loss of epidermal structures were noted. Enzymes generating pro-inflammatory mediators including myeloperoxidase and cyclooxygenase-2 were upregulated. After 7 days, keratin-10, a differentiation marker, was evident in the stratum corneum. This was associated with an underlying eschar, as neoepidermis began to migrate at the wound edges. Trichrome staining revealed increased collagen deposition in the dermis. PCNA expression in the epidermis was correlated with hyperplasia, hyperkeratosis, and parakeratosis. By 14 days, there was epidermal regeneration with extensive hyperplasia, and reduced expression of cleaved caspase-3, cyclooxygenase-2 and phospho-H2A.X. These findings are consistent with the pathophysiology of SM-induced skin injury in humans suggesting that the hairless mouse can be used to investigate the dermatoxicity of vesicants and the potential efficacy of countermeasures.


Assuntos
Dano ao DNA , Inflamação/patologia , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Pele/patologia , Animais , Apoptose/efeitos dos fármacos , Biomarcadores/metabolismo , Caspase 3/metabolismo , Degranulação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Histonas/metabolismo , Queratinócitos/efeitos dos fármacos , Queratinócitos/patologia , Queratinas/metabolismo , Masculino , Mastócitos/efeitos dos fármacos , Mastócitos/patologia , Mastócitos/fisiologia , Camundongos , Camundongos Pelados , Peroxidase/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Pele/enzimologia , Coloração e Rotulagem , Cicatrização/efeitos dos fármacos
15.
Toxicol Appl Pharmacol ; 253(2): 112-20, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21457723

RESUMO

Dermal exposure to the vesicant sulfur mustard causes marked inflammation and tissue damage. Basal keratinocytes appear to be a major target of sulfur mustard. In the present studies, mechanisms mediating skin toxicity were examined using a mouse skin construct model and a full-thickness human skin equivalent (EpiDerm-FT™). In both systems, administration of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide (CEES, 100-1000µM) at the air surface induced mRNA and protein expression of heat shock proteins 27 and 70 (Hsp27 and Hsp70). CEES treatment also resulted in increased expression of caveolin-1, the major structural component of caveolae. Immunohistochemistry revealed that Hsp27, Hsp70 and caveolin-1 were localized in basal and suprabasal layers of the epidermis. Caveolin-1 was also detected in fibroblasts in the dermal component of the full thickness human skin equivalent. Western blot analysis of caveolar membrane fractions isolated by sucrose density centrifugation demonstrated that Hsp27 and Hsp70 were localized in caveolae. Treatment of mouse keratinocytes with filipin III or methyl-ß-cyclodextrin, which disrupt caveolar structure, markedly suppressed CEES-induced Hsp27 and Hsp70 mRNA and protein expression. CEES treatment is known to activate JNK and p38 MAP kinases; in mouse keratinocytes, inhibition of these enzymes suppressed CEES-induced expression of Hsp27 and Hsp70. These data suggest that MAP kinases regulate Hsp 27 and Hsp70; moreover, caveolae-mediated regulation of heat shock protein expression may be important in the pathophysiology of vesicant-induced skin toxicity.


Assuntos
Cavéolas/fisiologia , Proteínas de Choque Térmico HSP27/análise , Proteínas de Choque Térmico HSP70/análise , Gás de Mostarda/análogos & derivados , Pele/efeitos dos fármacos , Animais , Caveolina 1/análise , Proteínas de Choque Térmico , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Chaperonas Moleculares , Gás de Mostarda/toxicidade , Pele/química
16.
J Ocul Pharmacol Ther ; 26(5): 407-19, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20925577

RESUMO

PURPOSE: The goals of this study were (1) to compare the injury at the basement membrane zone (BMZ) of rabbit corneal organ cultures exposed to half mustard (2 chloroethyl ethyl sulfide, CEES) and nitrogen mustard with that of in vivo rabbit eyes exposed to sulfur mustard (SM); (2) to test the efficacy of 4 tetracycline derivatives in attenuating vesicant-induced BMZ disruption in the 24-h period postexposure; and (3) to use the most effective tetracycline derivative to compare the improvement of injury when the drug is delivered as drops or hydrogels to eyes exposed in vivo to SM. METHODS: Histological analysis of hematoxylin and eosin­stained sections was performed; the ultrastructure of the corneal BMZ was evaluated by transmission electron microscopy; matrix metalloproteinase-9 was assessed by immunofluorescence; doxycycline as drops or a hydrogel was applied daily for 28 days to eyes exposed in vivo to SM. Corneal edema was assessed by pachymetry and the extent of neovascularization was graded by length of longest vessel in each quadrant. RESULTS: Injury to the BMZ was highly similar with all vesicants, but varied in degree of severity. The effectiveness of the 4 drugs in retaining BMZ integrity did not correlate with their ability to attenuate matrix metalloproteinase-9 expression at the epithelial­stromal border. Doxycycline was most effective on organ cultures; therefore, it was applied as drops or a hydrogel to rabbit corneas exposed in vivo to SM. Eyes were examined at 1, 3, 7, and 28 days after exposure. At 7 and 28 days after SM exposure, eyes treated with doxycycline were greatly improved over those that received no therapy. Corneal thickness decreased somewhat faster using doxycycline drops, whereas the hydrogel formulation decreased the incidence of neovascularization. CONCLUSIONS: Corneal cultures exposed to 2-chloroethyl ethyl sulfide and nitrogen mustard were effective models to simulate in vivo SM exposures. Doxycycline as drops and hydrogels ameliorated vesicant injury. With in vivo exposed animals, the drops reduced edema faster than the hydrogels, but use of the hydrogels significantly reduced neovascularization. The data provide proof of principle that a hydrogel formulation of doxycycline as a daily therapy for ocular vesicant injury should be further investigated.


Assuntos
Antibacterianos/farmacologia , Doxiciclina/farmacologia , Traumatismos Oculares/tratamento farmacológico , Hidrogéis/farmacologia , Animais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Membrana Basal/fisiopatologia , Doenças da Córnea/induzido quimicamente , Doenças da Córnea/tratamento farmacológico , Doenças da Córnea/patologia , Edema da Córnea/patologia , Neovascularização da Córnea/induzido quimicamente , Neovascularização da Córnea/metabolismo , Doxiciclina/administração & dosagem , Doxiciclina/efeitos adversos , Doxiciclina/metabolismo , Epitélio Corneano/efeitos dos fármacos , Epitélio Corneano/patologia , Olho/efeitos dos fármacos , Olho/patologia , Traumatismos Oculares/patologia , Hidrogéis/efeitos adversos , Irritantes/efeitos adversos , Irritantes/farmacologia , Masculino , Mecloretamina/farmacologia , Mecloretamina/toxicidade , Gás de Mostarda/farmacologia , Gás de Mostarda/toxicidade , Compostos de Mostarda Nitrogenada/farmacologia , Compostos de Mostarda Nitrogenada/toxicidade , Coelhos , Tetraciclinas/administração & dosagem , Tetraciclinas/efeitos adversos , Tetraciclinas/metabolismo , Tetraciclinas/farmacologia
17.
Toxicol Appl Pharmacol ; 249(2): 178-87, 2010 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-20840853

RESUMO

Sulfur mustard is a potent vesicant that induces inflammation, edema and blistering following dermal exposure. To assess molecular mechanisms mediating these responses, we analyzed the effects of the model sulfur mustard vesicant, 2-chloroethyl ethyl sulfide, on EpiDerm-FT™, a commercially available full-thickness human skin equivalent. CEES (100-1000 µM) caused a concentration-dependent increase in pyknotic nuclei and vacuolization in basal keratinocytes; at high concentrations (300-1000 µM), CEES also disrupted keratin filament architecture in the stratum corneum. This was associated with time-dependent increases in expression of proliferating cell nuclear antigen, a marker of cell proliferation, and poly(ADP-ribose) polymerase (PARP) and phosphorylated histone H2AX, markers of DNA damage. Concentration- and time-dependent increases in mRNA and protein expression of eicosanoid biosynthetic enzymes including COX-2, 5-lipoxygenase, microsomal PGE2 synthases, leukotriene (LT) A4 hydrolase and LTC4 synthase were observed in CEES-treated skin equivalents, as well as in antioxidant enzymes, glutathione S-transferases A1-2 (GSTA1-2), GSTA3 and GSTA4. These data demonstrate that CEES induces rapid cellular damage, cytotoxicity and inflammation in full-thickness skin equivalents. These effects are similar to human responses to vesicants in vivo and suggest that the full thickness skin equivalent is a useful in vitro model to characterize the biological effects of mustards and to develop potential therapeutics.


Assuntos
Irritantes/toxicidade , Gás de Mostarda/análogos & derivados , Pele/efeitos dos fármacos , Biomarcadores/metabolismo , Western Blotting , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Eicosanoides/biossíntese , Histonas/biossíntese , Humanos , Queratinócitos/citologia , Queratinócitos/efeitos dos fármacos , Gás de Mostarda/toxicidade , Poli Adenosina Difosfato Ribose/biossíntese , Antígeno Nuclear de Célula em Proliferação/biossíntese , RNA Mensageiro/biossíntese , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Pele/citologia , Fatores de Tempo
18.
Toxicol Appl Pharmacol ; 245(3): 352-60, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20382172

RESUMO

Dermal exposure to sulfur mustard causes inflammation and tissue injury. This is associated with changes in expression of antioxidants and eicosanoids which contribute to oxidative stress and toxicity. In the present studies we analyzed mechanisms regulating expression of these mediators using an in vitro skin construct model in which mouse keratinocytes were grown at an air-liquid interface and exposed directly to 2-chloroethyl ethyl sulfide (CEES), a model sulfur mustard vesicant. CEES (100-1000 microM) was found to cause marked increases in keratinocyte protein carbonyls, a marker of oxidative stress. This was correlated with increases in expression of Cu,Zn superoxide dismutase, catalase, thioredoxin reductase and the glutathione S-transferases, GSTA1-2, GSTP1 and mGST2. CEES also upregulated several enzymes important in the synthesis of prostaglandins and leukotrienes including cyclooxygenase-2 (COX-2), microsomal prostaglandin E synthase-2 (mPGES-2), prostaglandin D synthase (PGDS), 5-lipoxygenase (5-LOX), leukotriene A(4) (LTA(4)) hydrolase and leukotriene C(4) (LTC(4)) synthase. CEES readily activated keratinocyte JNK and p38 MAP kinases, signaling pathways which are known to regulate expression of antioxidants, as well as prostaglandin and leukotriene synthases. Inhibition of p38 MAP kinase suppressed CEES-induced expression of GSTA1-2, COX-2, mPGES-2, PGDS, 5-LOX, LTA(4) hydrolase and LTC(4) synthase, while JNK inhibition blocked PGDS and GSTP1. These data indicate that CEES modulates expression of antioxidants and enzymes producing inflammatory mediators by distinct mechanisms. Increases in antioxidants may be an adaptive process to limit tissue damage. Inhibiting the capacity of keratinocytes to generate eicosanoids may be important in limiting inflammation and protecting the skin from vesicant-induced oxidative stress and injury.


Assuntos
Antioxidantes/metabolismo , Substâncias para a Guerra Química/toxicidade , Mediadores da Inflamação/metabolismo , Inflamação/induzido quimicamente , Irritantes/toxicidade , Queratinócitos/efeitos dos fármacos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Gás de Mostarda/análogos & derivados , Estresse Oxidativo/efeitos dos fármacos , Animais , Linhagem Celular , Relação Dose-Resposta a Droga , Eicosanoides/metabolismo , Ativação Enzimática , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Inflamação/enzimologia , Inflamação/imunologia , Queratinócitos/enzimologia , Queratinócitos/imunologia , Camundongos , Gás de Mostarda/toxicidade , Carbonilação Proteica/efeitos dos fármacos
19.
Toxicol Sci ; 114(1): 5-19, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19833738

RESUMO

Sulfur mustard (SM), a chemical weapon first employed during World War I, targets the skin, eyes, and lung. It remains a significant military and civilian threat. The characteristic response of human skin to SM involves erythema of delayed onset, followed by edema with inflammatory cell infiltration, the appearance of large blisters in the affected area, and a prolonged healing period. Several in vivo and in vitro models have been established to understand the pathology and investigate the mechanism of action of this vesicating agent in the skin. SM is a bifunctional alkylating agent which reacts with many targets including lipids, proteins, and DNA, forming both intra- and intermolecular cross-links. Despite the relatively nonselective chemical reactivity of this agent, basal keratinocytes are more sensitive, and blistering involves detachment of these cells from their basement membrane adherence zones. The sequence and manner in which these cells die and detach is still unresolved. Much has been discovered over the past two decades with respect to the mechanisms of SM-induced cytotoxicity and the intracellular and extracellular targets of this vesicant. In this review, the effects of SM exposure on the skin are described, as well as potential mechanisms mediating its actions. Successful therapy for SM poisoning will depend on following new mechanistic leads to develop drugs that target one or more of its sites of action.


Assuntos
Substâncias para a Guerra Química/toxicidade , Irritantes/toxicidade , Gás de Mostarda/toxicidade , Pele/efeitos dos fármacos , Administração Cutânea , Animais , Substâncias para a Guerra Química/química , Inflamação/metabolismo , Mediadores da Inflamação/metabolismo , Irritantes/química , Modelos Animais , Gás de Mostarda/química , Análise Serial de Proteínas , Pele/imunologia , Pele/metabolismo , Testes de Irritação da Pele
20.
J Biochem Mol Toxicol ; 23(3): 172-84, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19526566

RESUMO

Epithelial cell migration during wound healing is regulated in part by enzymatic processing of laminin-332 (formerly LN-5), a heterodimer formed from alpha, beta, and gamma polypeptide chains. Under static conditions, laminin-332 is secreted into the extracellular matrix as a proform and has two chains processed to smaller forms, allowing it to anchor epithelial cells to the basement membrane of the dermis. During incisional wounding, laminin gamma2 chains in particular are processed to smaller sizes and function to promote epithelial sheet migration over the wound bed. The present study examines whether this same function occurs following chemical injury. The mouse ear vesicant model (MEVM) was used to follow the pathology in the ear and test whether processed laminin-332 enhances epithelial cell migration. Skin biopsies of sulfur mustard (SM) exposed ears for several time points were analyzed by histology, immunohistochemistry, real-time PCR, and Western blot analysis. SM exposure greatly increased mRNA levels for laminin-gamma2 in comparison to the other two chains. Protein production of laminin-gamma2 was upregulated, and there was an increase in the processed forms. Protein production was in excess of the amount required to form heterotrimeric laminin-332 and was associated with the migrating epithelial sheet, suggesting a potential role in wound healing for monomeric laminin-gamma2.


Assuntos
Moléculas de Adesão Celular/biossíntese , Movimento Celular , Células Epiteliais/metabolismo , Laminina/biossíntese , Regulação para Cima , Cicatrização , Ferimentos e Lesões/metabolismo , Animais , Moléculas de Adesão Celular/metabolismo , Modelos Animais de Doenças , Orelha/patologia , Células Epiteliais/patologia , Matriz Extracelular/metabolismo , Matriz Extracelular/patologia , Humanos , Laminina/metabolismo , Camundongos , RNA Mensageiro/biossíntese , Ferimentos e Lesões/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...